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Motivation

Models of resistive MHD contain multiple length and time scales.

• Local refinement in space can add resolution only where needed.

• Implicit time integration can more efficiently resolve the time scales of interest.

– Explicit methods require ∆t . O(∆x2) when diffusion/Hall effects are significant.

– Semi-implicit methods allow ∆t . O(∆x).

I Accuracy often requires somewhat smaller values.

I Stability under long-term integration can be a problem.

– Implicit time steps are constrained only by accuracy requirements.
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Current-Vorticity Formulation of Reduced Resistive MHD4

(∂t + u · ∇ − η∆) J + ∆E0 = B · ∇ω + {Φ,Ψ}

(∂t + u · ∇ − ν∆)ω + Sω = B · ∇J

∆Φ = ω

∆Ψ = J

on a rectangular domain Ω. Here,

u = ∇× Φ, B = ∇×Ψ, {Φ,Ψ} = 2[Φxy(Ψxx −Ψyy)−Ψxy(Φxx − Φyy)].

Equilibrium sources are chosen to balance prescribed initial conditions:

E0 = η∆Ψ0, Sω = ν∆ω0.

4See also Strauss and Longcope, JCP, 147, 1998 for a formulation without resistive dissipation.
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Time Discretization

Crank-Nicolson semi-discretization in time leads to

(Jn+1 − Jn)/∆t+ [u · ∇J]n+θ − η∆Jn+θ = [B · ∇ω]n+θ + {Φ,Ψ}n+θ

(ωn+1 − ωn)/∆t+ [u · ∇ω]n+θ − ν∆ωn+θ = [B · ∇J]n+θ

∆Φn+θ = ωn+θ

∆Ψn+θ = Jn+θ

where n+ θ quantities are calculated as ξn+θ = (1− θ)ξn + θξn+1.

We use PETSc’s Jacobian-free Newton-Krylov (JFNK) solver to advance the solution in time.
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Inexact Newton Methods

Let F : Rn → Rn and consider solving F (x) = 0.

The kth step of classical Newton’s method requires solution of the Newton equations:

F
′
(xk)sk = −F (xk).

With inexact Newton methods, we only require

‖F (xk) + F
′
(xk)sk‖ ≤ ηk‖F (xk)‖, ηk > 0.

This can be done with any iterative method.

Krylov subspace methods only need Jacobian-vector products, which can be approximated by

F
′
(xk)v ≈

F (xk + εv)− F (xk)

ε
, ε ≈ O(

√
εmach).

The resulting Jacobian-free Newton-Krylov method is easier to use because only function

evaluation and preconditioning setup/apply are needed.
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Linear Solves

JFNK allows us to focus on solving systems of linear equations0BBBBBB@
Lη −θB0 · ∇ UJ,ψ UJ,φ

−θB0 · ∇ Lν Uω,ψ Uω,φ

I 0 −∆ 0

0 I 0 −∆

1CCCCCCA

0BBBBBB@
δJ

δω

δψ

δφ

1CCCCCCA =

0BBBBBB@
rJ

rω

rψ

rφ

1CCCCCCA
where

Lη =
I

∆t
+ θ(u0 · ∇ − η∆),

Lν =
I

∆t
+ θ(u0 · ∇ − ν∆).
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Physics-based Preconditioning

This is done by first eliminating δJ and δω, and introducing some approximations5 to obtain

P

0@ δΨ

δΦ

1A ≈ ∆−1

240@ rJ

rω

1A− P

0@ rΨ

rΦ

1A35 .
where

P ≡

0@ Lη −θB0 · ∇

−θB0 · ∇ Lν

1A
We then recover the current and vorticity by solving

P

0@ δJ

δω

1A =

0@ rJ − θ(δu · ∇J0 − δB · ∇ω0 − {δΦ,Ψ0} − {Φ0, δΨ})

rω − θ(δu · ∇ω0 − δB · ∇J0)

1A .

5For details see Chacón, Knoll and Finn, JCP, 178, 2002
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Solution Procedure

Systems of equations involving P are solved with a few iterations of the stationary method

obtained from the splitting

P = M−N , M =

0@ Lη −θB0 · ∇

−θB0 · ∇ Dν

1A

To solve systems of equations involving M, we use the block factorization

M =

0@ I −θB0 · ∇D−1
ν

0 I

1A 0@ Lη − θ2∇ · B0D−1
ν BT

0∇ 0

−θB0 · ∇ Dν

1A .

Without spatial adaptivity, the required solves are performed using a multigrid method. With

spatial adaptivity, the solves are performed using an AMR-aware variation of multigrid.
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Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of

logically rectangular meshes.

• The mesh is organized as a hierarchy of nested refinement levels.

• Each refinement level defines a region of uniform resolution.

• Each refinement level is the union of logically rectangular patches.
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Hierarchical Structure of SAMR Grids
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Fast Adaptive Composite Grid Method6

Algorithm: FAC for Lx = f

Initialize: rh = fh − Lhxh; fhL−1 = I
hL−1
hL−1

rh

For k = L− 1, . . . 1 {
Solve/smooth Lhkehk = fhk.

Correct xhk = xhk + I
hk
hk
ehk.

Update rhk = fhk − Lhkxhk.
Set fhk−1 = I

hk−1
hk

rhk.

}
Solve Lh0eh0 = fh0.

For k = 1, . . . , L− 1 {
Correct xhk = xhk + I

hk
hk−1

ehk−1.

Update rhk = fhk − Lhkxhk.
Set fhk = I

hk
hk
rhk.

Solve/smooth Lhkehk = fhk.

Correct xhk = xhk + I
hk
hk
ehk.

}

6McCormick and Thomas, Math. Comp., 46, (1986).
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Tearing Mode Problem

Initial conditions:

Ψ0(x, y) = 1
λ ln[cosh(λ(y − 1

2))]

Φ0(x, y) = 0

ω0(x, y) = 0

Boundary Conditions:

Periodic in x and homogenous Dirichlet in y.

Perturbation:

δΨ = 10−3 cos(π2x) sin(πy)

Parameters:

Ω = [0, 4]× [0, 1], λ = 5, η = ν = 10−3

Refinement criteria:

• magnitude of J

• curvature of ω
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Tearing Mode Comparison at t = 120

256B+0 128B+1 64B+2
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Tearing Mode Results

t = 50 t = 120 t = 200
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Tearing Mode Performance

NNI NLI

Levels 1 2 3 4 5 1 2 3 4 5

32× 32 1.5 2.0 2.0 2.1 2.5 3.4 7.9 12.0 19.3 33.7

64× 64 1.8 2.0 2.0 2.4 – 6.5 11.7 19.1 33.2 –

128× 128 1.8 2.0 2.4 – – 12.5 20.1 27.2 – –

256× 256 1.9 2.0 – – – 19.9 27.5 – – –

512× 512 1.9 – – – – 26.3 – – – –

ηk = 0.1, εrel = εabs = 10−7, 2 SI iterations, V(3,3) cycles
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Island Coalescence

Initial conditions:

Ψ0(x, y) = −λ ln[cosh(yλ) + ε cos(xλ)]

Φ0(x, y) = 0

ω0(x, y) = 0

Boundary Conditions:

Periodic in x and homogenous Dirichlet in y.

Perturbation:

δΨ = 10−3 cos(πx) cos(π2y)

Parameters:

Ω = [−1, 1]× [−1, 1], λ = 1
2π , ε = 0.2, η = ν = 10−4

Refinement criteria:

• magnitude, curvature of J

• curvature of ω
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Island Coalescence Results at t = 4
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Island Coalescence Results at t = 8
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Island Coalescence Current Sheet Detail

19



Island Coalescence: Performance

Final time:

t = 20

Time increment:

∆t = 0.01

JFNK parameters:

ηk = 0.05, εrel = εabs = 10−6

SI Preconditioner parameters:

2 iterations, V(3,3) cycles

Newton iterations per timestep:

3.9

Linear iterations per timestep:

9.0
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Tilt Instability

Initial conditions:

Ψ0(x, y) =

8<: 2
kJ0(k)J1(kr) cos(θ) if r ≤ 1

(r − 1
r) cos(θ) if r > 1

Φ0(x, y) = 0

ω0(x, y) = 0

Boundary Conditions:

Periodic in x and homogenous Dirichlet in y.

Perturbation:

δΦ = 10−3e−r
2

Parameters:

Ω = [−2π, 2π]× [−5, 5], J1(k) = 0, η = ν = 10−3

Refinement criteria:

• magnitude, curvature of J

• curvature of ω

21



Tilt Instability Results at t = 4
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Tilt Instability Results at t = 7
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Tilt Instability: Performance

Final time:

t = 20

Time increment:

∆t = 0.005

JFNK parameters:

ηk = 0.01, εrel = εabs = 10−6

SI Preconditioner parameters:

1 iteration, V(3,3) cycles

Newton iterations per timestep:

3.7

Linear iterations per timestep:

17.6
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Conclusions

• Spatial adaptivity allows us to efficiently resolve fine scale features.

• Multilevel preconditioning strategy controls work required for the implicit solves and makes

implicit integration competetive.
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Future Work

• Verify correctness of locally refined calculations.

• Quantify the impact of local mesh refinement.

– Problem size.

– Execution time.

• Determine scaling of linear iteration counts with amount of local refinement for island

coalescence and tilt instability problems.

• Determine performance for “interesting” values of η and ν.

• Enhance parallel performance.

• Local time step error control (under development).
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